Computing Acute and Non-obtuse Triangulations

نویسندگان

  • Hale Erten
  • Alper Üngör
چکیده

We propose a method for computing acute (non-obtuse) triangulations. That is, for a given two dimensional domain (a set of points or a planar straight line graph), we compute a triangulation of the domain such that all angles are less than (or less than or equal to) π/2. This leads to the first software to compute such triangulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute Triangulations of Archimedean Surfaces . The Truncated Tetrahedron

In this paper we prove that the surface of the regular truncated tetrahedron can be triangulated into 10 non-obtuse geodesic triangles, and also into 12 acute geodesic triangles. Furthermore, we show that both triangulations have minimal size.

متن کامل

Improved bounds for acute triangulations of convex polygons

We present a novel method of constructing non-obtuse and acute triangulations of planar convex n-gons, improving existing bounds presented in [L. Yuan, Discrete Comput. Geom. 34, 697-706 (2005)] for 6 ≤ n ≤ 11 and 6 ≤ n ≤ 56, respectively.

متن کامل

Acute triangulations of the regular dodecahedral surface

In this paper we consider geodesic triangulations of the surface of the regular dodecahedron. We are especially interested in triangulations with angles not larger than π/2, with as few triangles as possible. The obvious triangulation obtained by taking the centres of all faces consists of 20 acute triangles. We show that there exists a geodesic triangulation with only 10 non-obtuse triangles, ...

متن کامل

Acute Triangulations of the Cuboctahedral Surface

In this paper we prove that the surface of the cuboctahedron can be triangulated into 8 non-obtuse triangles and 12 acute triangles. Furthermore, we show that both bounds are the best possible.

متن کامل

Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle

We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007